skip to main content

Animal as Bioindicator of River Water Quality: Bibliometric Analysis

Department of Biology Education, Faculty of Teacher Training and Education, Universitas Lambung Mangkurat, Banjarmasin, South Kalimantan, Indonesia, 70123, Indonesia

Received: 7 Aug 2025; Revised: 18 Oct 2025; Accepted: 24 Nov 2025; Available online: 24 Nov 2025; Published: 18 Dec 2025.
Editor(s): Marcelinus Christwardana
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Citation Format:
Abstract
River water quality is vital to life, but anthropogenic activities have caused significant degradation, threatening aquatic ecosystems and clean water supplies. Although bioindicators have long been used to monitor river health, there has been no bibliometric review to analyze trends and research gaps in this field. Previous studies have mostly focused on specific species or physical-chemical parameters, but have not yet fully integrated an ecosystem indicator approach. Therefore, this study aims to address this gap by conducting a bibliometric analysis of publications on animals as bioindicators of river water quality. The method used is a bibliometric review using data from the Scopus database (2020–2024), analyzed using VOSviewer to visualize the co-occurrence of keywords, as well as a descriptive analysis of publication trends, journals, and fields of study. The results show a significant increase in publications since 2020, with Ecological Indicators and Science of the Total Environment as the leading journals, and Environmental Science as the dominant field of study. Co-occurrence analysis identified three main research clusters: ecology and communities, physiological responses to pollutants, and heavy metal contamination. These findings indicate that global research focus is concentrated on the impact of heavy metal pollutants, while the issues of microplastics and climate change on bioindicators are relatively less explored. This clustering pattern also emphasizes the importance of combining ecological, physiological, and pollution-related approaches, reflecting interdisciplinary advances in this area. In conclusion, the use of animals as bioindicators has a strong theoretical basis and offers an integrated approach to water management such as river. Future studies focusing on developing more sensitive bioassay methods and conducting long-term toxicity analyses are important, but they must also incorporate molecular tools such as eDNA and metabolomics to strengthen biomonitoring systems. In addition, decision makers are encouraged to implement bioindicators that use animals in water quality monitoring systems in order to improve early detection capabilities for river ecosystem degradation.
Fulltext View|Download
Keywords: water quality; bioindicator; animal; bibliometric; sustainable

Article Metrics:

  1. Alcamo, J. (2019). Water quality and its interlinkages with the Sustainable Development Goals. Current opinion in environmental sustainability, 36, 126-140. doi: 10.1016/j.cosust.2018.11.005
  2. Anetor, G. O., Nwobi, N. L., Igharo, G. O., Sonuga, O. O., & Anetor, J. I. (2022). Environmental pollutants and oxi-dative stress in terrestrial and aquatic organisms: examination of the total picture and implications for human health. Frontiers in Physiology, 13, 931386. doi: 10.3389/fphys.2022.931386
  3. Athulya, P., Prasad, P. V., Sivalingam, R., Sajeev, T. V., Kumar, C. S. R., & Syamkumar, R. N. P. (2024). Aquatic insects for monitoring the health status of riverine potholes: A case study in
  4. Chalakudy river basin, Kerala, In-dia. Environmental Monitoring and Assessment, 196(2), 108. doi: 10.1007/s10661-023-12254-x
  5. Barbosa, H., Soares, A. M., Pereira, E., & Freitas, R. (2023). Lithium: A review on concentrations and impacts in marine and coastal systems. Science of The Total Environment, 857, 159374. doi: 10.1016/j.scitotenv.2022.159374
  6. Bogardi, J. J., Leentvaar, J., & Sebesvári, Z. (2020). Biologia Futura: integrating freshwater ecosystem health in water resources management. Biologia futura, 71(4), 337-358. doi: 10.1007/s42977-020-00031-7
  7. Byns, C., Groffen, T., & Bervoets, L. (2024). Aquatic macroinvertebrate community responses to pollution of per-fluoroalkyl substances (PFAS): Can we define threshold body burdens?. Science of The Total Environment, 917, 170611. doi: 10.1016/j.scitotenv.2024.170611
  8. Chakraborty, S. K. (2021). River pollution and perturbation: Perspectives and processes. In Riverine Ecology Volume 2: Biodiversity Conservation, Conflicts and Resolution (pp. 443-530). Cham: Springer International Publishing. doi: 10.1007/978-3-030-53941-2_5
  9. Chele, F. S., Cabrera Quezada, M., Ramirez, R., Vargas, A., Cayambe, J., Alvarez, J., ... & Segura, E. (2025). Spatio-temporal assessment of benthic macroinvertebrate communities in the Bermejo River Basin in the Ecuadorian Amazonia. Limnology and Oceanography Letters, 10(3), 371-380. https://doi.org/10.1002/lol2.70012
  10. Chen, S. S., Kimirei, I. A., Yu, C., Shen, Q., & Gao, Q. (2022). Assessment of urban river water pollution with ur-banization in East Africa. Environmental Science and Pollution Research, 29(27), 40812-40825. doi: 10.1007/s11356-021-18082-1
  11. Chen, X., Wang, Y., Jiang, L., Huang, X., Huang, D., Dai, W., ... & Wang, D. (2023). Water quality status response to multiple anthropogenic activities in urban river. Environmental Science and Pollution Research, 30(2), 3440-3452. doi: 10.1007/s11356-022-22378-1
  12. Darko, G., Obiri-Yeboah, S., Takyi, S. A., Amponsah, O., Borquaye, L. S., Amponsah, L. O., & Fosu-Mensah, B. Y. (2022). Urbanizing with or without nature: Pollution effects of human activities on water quality of major rivers that drain the Kumasi Metropolis of Ghana. Environmental Monitoring and Assessment, 194(1), 38. doi: 10.1007/s10661-021-09686-8
  13. De Carvalho, F. G., Loyau, A., Kelly-Irving, M., & Schmeller, D. S. (2025). Aquatic ecosystem indices, linking eco-system health to human health risks. Biodiversity and Conservation, 34(3), 723-767. doi: 10.1007/s10531-025-03010-3
  14. Díaz, V., Maza-Márquez, P., Antinolo, L., Poyatos, J. M., Martín-Pascual, J., & del Mar Muñío, M. (2024). Effect of urban wastewater ratio in the influent of a membrane photobioreactor for microalgae cultivation and nutrient removal. Journal of Environmental Chemical Engineering, 12(3), 112527. doi: 10.1016/j.jece.2024.112527
  15. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of business research, 133, 285-296. doi: 10.1016/j.jbusres.2021.04.070
  16. Dudgeon, D., & Strayer, D. L. (2025). Bending the curve of global freshwater biodiversity loss: what are the pro-spects?. Biological Reviews, 100(1), 205-226. doi: 10.1111/brv.13137
  17. Gao, Q., Zhang, Q., Zeng, J., Yin, Z., Liu, J., Liu, G., & Peng, M. (2023). Macroinvertebrate community structure, pollution tolerance, diversity and feeding functional groups in polluted urban rivers under different black and odorous levels. Ecological Indicators, 156, 111148. https://doi.org/10.1016/j.ecolind.2023.111148
  18. Garousi, V., & Mäntylä, M. V. (2016). Citations, research topics and active countries in software engineering: A bibliometrics study. Computer Science Review, 19, 56-77. doi: 10.1016/j.cosrev.2015.12.002
  19. Giam, C. S. (2018). Pollutant studies in marine animals. CRC Press
  20. Gouda, S. A., Hesham, H., & Taha, A. (2024). Bioindicators: A Promising Tool for Detecting and Evaluating Water Pollution. Egyptian Journal of Aquatic Biology & Fisheries, 28(4), 1209-1235. doi: 10.21608/ejabf.2024.374025
  21. Grizzetti, B., Liquete, C., Pistocchi, A., Vigiak, O., Zulian, G., Bouraoui, F., ... & Cardoso, A. C. (2019). Relationship between ecological condition and ecosystem services in European rivers, lakes and coastal waters. Science of the Total Environment, 671, 452-465. doi: 10.1016/j.scitotenv.2019.03.155
  22. Gulia, S., Singh, S., Falak, N. E., Singh, B. P., Butola, R., Das, A., & Chandra, P. (2025). Sensors for monitoring global deposition of pollutants in aquatic ecosystems. In Sensors for Marine Biosciences: Next-generation sensing ap-proaches. Bristol, UK: IOP Publishing. https://iopscience.iop.org/book/edit/978-0-7503-5999-3.mobi
  23. Hassan, W., & Duarte, A. E. (2024). Bibliometric analysis: a few suggestions. Current problems in cardiology, 49(8), 102640. doi: 10.1016/j.cpcardiol.2024.102640
  24. Hearst, S., Selby, T., Kazery, J., Everman, S., Feng, M., Sisson, L., ... & Sinclair, M. (2025). Fish as environmental sentinels for metal contaminants of human health concern in the Lower Mississippi River Basin. Journal of Trace Elements in Medicine and Biology, 87, 127593. https://doi.org/10.1016/j.jtemb.2025.127593
  25. Holmes, M. W., Hammond, T. T., Wogan, G. O., Walsh, R. E., LaBarbera, K., Wommack, E. A., ... & Nachman, M. W. (2016). Natural history collections as windows on evolutionary processes. Molecular ecology, 25(4), 864-881. doi: 10.1111/mec.13529
  26. Jacob, D. E., Nеlson, I. U., Izah, S. C., Ukpong, E., Akpan, U. U., & Ogwu, M. C. (2024). Bioindicators in recreational planning and development: balancing nature and human activities. In Biomonitoring of pollutants in the global south (pp. 835-878). Singapore: Springer Nature Singapore. doi: 10.1007/978-981-97-1658-6_24
  27. Jarma, D., Sacristán-Soriano, O., Borrego, C. M., Hortas, F., Peralta-Sánchez, J. M., Balcázar, J. L., ... & Sánchez, M. I. (2024). Variability of faecal microbiota and antibiotic resistance genes in flocks of migratory gulls and com-parison with the surrounding environment. Environmental Pollution, 359, 124563. doi: 10.1016/j.envpol.2024.124563
  28. Javed, M., & Usmani, N. (2019). An overview of the adverse effects of heavy metal contamination on fish health. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89(2), 389-403. doi: 10.1007/s40011-017-0875-7
  29. Kenko, D. B. N., & Ngameni, N. T. (2022). Assessment of ecotoxicological effects of agrochemicals on bees using the PRIMET model, in the Tiko plain (South-West Cameroon). Heliyon, 8(3), e09154. doi: 10.1016/j.heliyon.2022.e09154
  30. Kizgin, A., Schmidt, D., Joss, A., Hollender, J., Morgenroth, E., Kienle, C., & Langer, M. (2023). Application of bio-logical early warning systems in wastewater treatment plants: Introducing a promising approach to monitor changing wastewater composition. Journal of Environmental Management, 347, 119001. doi: 10.1016/j.jenvman.2023.119001
  31. Koki, I. B., Low, K. H., Zain, S. M., Juahir, H., Bayero, A. S., Azid, A., & Zali, M. A. (2020). Spatial variability in surface water quality of lakes and ex-mining ponds in Malacca, Malaysia: the geochemical influence. Desalination and Water Treatment, 197, 319-327. doi: 10.5004/dwt.2020.25982
  32. Lagunas‐Rangel, F. A., Linnea‐Niemi, J. V., Kudłak, B., Williams, M. J., Jönsson, J., & Schiöth, H. B. (2022). Role of the synergistic interactions of environmental pollutants in the development of cancer. GeoHealth, 6(4), e2021GH000552. doi: 10.1029/2021GH000552
  33. Liu, F., Li, X., Bello, B. K., Zhang, T., Yang, H., Wang, K., & Dong, J. (2022). Difenoconazole causes spleen tissue damage and immune dysfunction of carp through oxidative stress and apoptosis. Ecotoxicology and environ-mental safety, 237, 113563. doi: 10.1016/j.ecoenv.2022.113563
  34. Lopez, L. K., Gil, M. A., Crowley, P. H., Trimmer, P. C., Munson, A., Ligocki, I. Y., ... & Sih, A. (2023). Integrating animal behaviour into research on multiple environmental stressors: a conceptual framework. Biological Re-views, 98(4), 1345-1364. doi: 10.1111/brv.12956
  35. Majola, N., Mzimela, H. M., & Izegaegbe, J. I. (2020). Metal bioaccumulation and energy biomarkers in tissues of two populations of Chiromantes eulimene from Richards Bay Harbour, South Africa. Scientific African, 10, e00558. doi: 10.1016/j.sciaf.2020.e00558
  36. Mearns, A. J., Reish, D. J., Bissell, M., Morrison, A. M., Rempel‐Hester, M. A., Arthur, C., ... & Pryor, R. (2018). Effects of pollution on marine organisms. Water Environment Research, 90(10), 1206-1300. doi: 10.2175/106143018X15289915807218
  37. Mureithi, P. W., Aine, A., Basooma, R., Namumbya, J., Nansumbi, F., Yegon, M. J., ... & Graf, W. (2025). Advance-ments in macroinvertebrate-based river bioassessment research in the Afrotropical region: Review and steps towards a regional framework. Environmental Monitoring and Assessment, 197(8), 935. https://doi.org/10.1007/s10661-025-14272-3
  38. Ngene, B. U., Nwafor, C. O., Bamigboye, G. O., Ogbiye, A. S., Ogundare, J. O., & Akpan, V. E. (2021). Assessment of water resources development and exploitation in Nigeria: A review of integrated water resources manage-ment approach. Heliyon, 7(1), e05955. doi: 10.1016/j.heliyon.2021.e05955
  39. Novais, M. H., Penha, A. M., Catarino, A., Martins, I., Fialho, S., Lima, A., ... & Palma, P. (2023). The usefulness of ecotoxicological tools to improve the assessment of water bodies in a climate change reality. Science of the total environment, 901, 166392. doi: 10.1016/j.scitotenv.2023.166392
  40. Novikoff, A. B. (1945). The concept of integrative levels and biology. Science, 101(2618), 209-215. doi: 10.1126/science.101.2618.209
  41. Ogidi, O. I., & Akpan, U. M. (2022). Aquatic biodiversity loss: impacts of pollution and anthropogenic activities and strategies for conservation. In Biodiversity in Africa: potentials, threats and conservation (pp. 421-448). Singapore: Springer Nature Singapore. doi: 10.1007/978-981-19-3326-4_16
  42. Ogidi, O. I., Onwuagba, C. G., & Richard-Nwachukwu, N. (2024). Biomonitoring tools, techniques and approaches for environmental assessments. In Biomonitoring of pollutants in the Global South (pp. 243-273). Singapore: Springer Nature Singapore. doi: 10.1007/978-981-97-1658-6_7
  43. Onwudiegwu, C. A., Sylva, L., Aigberua, A. O., & Hait, M. (2024). Biological monitoring of air pollutants. In Air Pollutants in the Context of One Health: Fundamentals, Sources, and Impacts (pp. 457-484). Cham: Springer Nature Switzerland. doi: 10.1007/698_2024_1139
  44. Orozco-González, C. E., & Ocasio-Torres, M. E. (2023). Aquatic macroinvertebrates as bioindicators of water quality: A study of an ecosystem regulation service in a tropical river. Ecologies, 4(2), 209-228. https://doi.org/10.3390/ecologies4020015
  45. Pessin, V. Z., Yamane, L. H., & Siman, R. R. (2022). Smart bibliometrics: an integrated method of science mapping and bibliometric analysis. Scientometrics, 127(6), 3695-3718. doi: 10.1007/s11192-022-04406-6
  46. Rigano, L., Schmitz, M., Hollert, H., Linnemann, V., Krauss, M., & Pfenninger, M. (2024). Mind your tyres: the eco-toxicological impact of urban sediments on an aquatic organism. Science of The Total Environment, 951, 175597. doi: 10.1016/j.scitotenv.2024.175597
  47. Samuel, P. O., Edo, G. I., Oloni, G. O., Ugbune, U., Ezekiel, G. O., Essaghah, A. E. A., & Agbo, J. J. (2023). Effects of chemical contaminants on the ecology and evolution of organisms a review. Chemistry and Ecology, 39(10), 1071-1107. doi: 10.1080/02757540.2023.2284158
  48. Santoso, H. B., Krisdianto, K., & Yunita, R. (2024). Iron bioaccumulation and ecological implications in the coastal swamp wetlands ecosystem of South Kalimantan: Insights from giant mudskipper fish as bioindicators. Journal of Degraded and Mining Lands Management, 11(3), 5539-5550. doi: 10.15243/jdmlm.2024.113.5539
  49. Savoca, M. S., Abreo, N. A., Arias, A. H., Baes, L., Baini, M., Bergami, E., ... & Santos, R. G. (2025). Monitoring plastic pollution using bioindicators: a global review and recommendations for marine environments. Environmental Science: Advances, 4, 10-32. doi: 10.1039/D4VA00174E
  50. Sehnal, L., Brammer-Robbins, E., Wormington, A. M., Blaha, L., Bisesi, J., Larkin, I., ... & Adamovsky, O. (2021). Microbiome composition and function in aquatic vertebrates: small organisms making big impacts on aquatic animal health. Frontiers in microbiology, 12, 567408. doi: 10.3389/fmicb.2021.567408
  51. Shaalan, W. M. (2024). Hazardous effects of heavy metal pollution on Nile tilapia in the aquatic ecosystem of the Eastern Delta in Egypt. BMC Veterinary Research, 20(1), 585. https://doi.org/10.1186/s12917-024-04367-3
  52. Sparling, D. W. (2016). Ecotoxicology essentials: environmental contaminants and their biological effects on animals and plants. Academic Press
  53. Sumudumali, R. G. I., & Jayawardana, J. M. C. K. (2021). A review of biological monitoring of aquatic ecosystems approaches: with special reference to macroinvertebrates and pesticide pollution. Environmental manage-ment, 67(2), 263-276. doi: 10.1007/s00267-020-01423-0
  54. Sumudumali, R. G. I., & Jayawardana, J. M. C. K. (2021). A review of biological monitoring of aquatic ecosystems approaches: with special reference to macroinvertebrates and pesticide pollution. Environmental management, 67(2), 263-276. doi: 10.1007/s00267-020-01423-0
  55. Wang, H., & He, G. (2022). Rivers: Linking nature, life, and civilization. River, 1(1), 25-36. doi: 10.1002/rvr2.7
  56. Yang, D., Yang, Y., & Xia, J. (2021). Hydrological cycle and water resources in a changing world: A review. Geography and Sustainability, 2(2), 115-122. doi: 10.1016/j.geosus.2021.05.003
  57. Yin, H., Islam, M. S., & Ju, M. (2021). Urban river pollution in the densely populated city of Dhaka, Bangladesh: Big picture and rehabilitation experience from other developing countries. Journal of Cleaner Production, 321, 129040. doi: 10.1016/j.jclepro.2021.129040

Last update:

No citation recorded.

Last update:

No citation recorded.