skip to main content

Identification of variations in the onset of the rainy and dry seasons in Indonesia

1Department of Geophysics, Tanjungpura University, Jl. Prof. Dr. H. Hadari Nawawi, Pontianak, Indonesia, Indonesia

2Climate and Atmosphere Research Center, National Research and Innovation Agency (BRIN), Indonesia, Indonesia

3Department of Physics, Tanjungpura University, Jl. Prof. Dr. H. Hadari Nawawi, Pontianak, Indonesia, Indonesia

Received: 5 Mar 2025; Revised: 4 Jun 2025; Accepted: 5 Jun 2025; Available online: 5 Jun 2025; Published: 23 Aug 2025.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Citation Format:
Abstract

In the equatorial region, Indonesia experiences distinct wet and dry seasons influenced by monsoon. The country's agricultural sector is highly susceptible to the impacts of climate change, including extreme weather events and shifting seasonal patterns due to global warming. This study aims to analyze variations in rainfall intensity and their effects on the onset of the seasons in Indonesia from 2001 to 2022. The research used GSMaP data, focusing on the area between 6° N - 11° S and 95° - 141° E. The start of the season was determined based on rainfall criteria from BMKG. The findings reveal significant changes in the onset of the rainy and dry seasons in regions such as Sumatra and Kalimantan, with the maximum change being 8 dasarian. The study also indicates that the rainy season during the 2012-2022 period is shorter compared to the 2001-2011 period, resulting in a longer dry season. Furthermore, the maximum standard deviation is 14 dasarian, allowing the season's start to shift by up to 14 dasarian annually in certain areas of Indonesia. ENSO can influence changes in the pattern of the start of the season.  

Fulltext View|Download

Article Metrics:

  1. Aldrian, E. (2002). Spatial Patterns of Enso Impact on Indonesian Rainfall. Jurnal Sains & Teknologi Modifikasi Cuaca, 3(1), 1–11
  2. Aldrian, E., Karmini, M., & Budiman. (2011). Adaptasi dan Mitigasi Perubahan Iklim di Indonesia, Pusat Perubahan Iklim dan Kualitas Udara. November, 174
  3. Beis, D. S., Pattipeilohy, W. J., & Hadi, A. S. (2022). Kajian Identifikasi Penurunan Tren Curah Hujan, CDD dan CWD di Kota Kupang, Nusa Tenggara Timur. Buletin GAW Bariri, 3(1), 8–16. https://doi.org/10.31172/bgb.v3i1.62
  4. BPS. (2023). Persentase Tenaga Kerja Informal Sektor Pertanian (Persen), 2021-2022. Badan Pusat Statistik. https://www.bps.go.id/id/statistics-table/2/MTE3MSMy/persentase-tenaga-kerja-informal-sektor-pertanian.html
  5. Duwanda, I. G. A. M. D., & Sukarasa, I. K. (2022). Validasi Curah Hujan Harian Berdasarkan Data Global Satellite Mapping of Precipitation (GSMaP) dengan Data Observasi di Wilayah Bali. Buletin Fisika, 23(2), 106–112. https://ojs.unud.ac.id/index.php/buletinfisika/article/download/75971/41129/
  6. Ferdian, H., Sutikno, S., & Fauzi, M. (2017). Penggunaan Data Hujan Satelit Terkoreksi untuk Analisis Kejadian Banjir di DAS Rokan. Jurnal Rab Construction Research, 2(2), 233–247
  7. Fitria, M. (2016). Validasi Data Curah Hujan Global Satellite Mapping of Precipitation (GSMaP) pada Tiga Pola Hujan di Indonesia. 1–56
  8. Giarno, G., Dupe, Z. L., & Mustofa, M. A. (2012). Kajian Awal Musim Hujan Dan Awal Musim Kemarau Di Indonesia. Jurnal Meteorologi Dan Geofisika, 13(1). https://doi.org/10.31172/jmg.v13i1.113
  9. Hariarta, I. G. W. (2015). Verifikasi Data Curah Hujan TRMM di Sumbawa Menggunakan Metode Inverse Distance Weighting, Mean, dan Point
  10. Helda, N., & Wijayanto, M. R. (2023). Identifikasi Kejadian Hujan dengan Menggunakan Data Satelit GSMaP (Global Satellite Mapping of Precipitation) di Banjarbaru. Buletin Profesi Insinyur, 6(2), 1–6. https://doi.org/10.20527/bpi.v6i2.195
  11. Hidayati, I. N., & Suryanto, S. (2015). Pengaruh Perubahan Iklim Terhadap Produksi Pertanian Dan Strategi Adaptasi Pada Lahan Rawan Kekeringan. Jurnal Ekonomi & Studi Pembangunan., 16(1), 42–52. https://doi.org/10.18196/jesp.16.1.1217
  12. Iskandar, D. (2010). Cuaca dan Iklim (U. Mustain (ed.)). ALPRIN
  13. JAXA. (2015). Global Satellite Mapping of Precipitation Microwave-IR Combined Product (GSMaP _ MVK) and Gauge-calibrated Rainfall Product (GSMaP_Gauge), Reanalysis Products (GSMaP_RNL), and Gauge-calibrated Reanalysis Product (GSMaP_Gauge_RNL) Data Format Description for Product Version 6
  14. Juaeni, I., Penerbangan, L., & Terapan, M. (2006). Analisis Variabilitas Curah Hujan Wilayah Indonesia Berdasarkan Pengamatan Tahun 1975-2004. Matematika, 9(2), 172–180. http://www.google.co.id/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&ved=0CG0QFjAH&url=http://ejournal.undip.ac.id/index.php/matematika/article/download/1385/1149&ei=oP2lUOLNEYflrAeJ3YDYBQ&usg=AFQjCNHa7H5qomy15QwB1oOFH0sK1yyZBQ&sig2=
  15. Kirono, D. G. C., & Tapper, N. J. (2015). Enso rainfall variability and impacts on crop production in Indonesia. Physical Geography, 20(6), 508–519. https://doi.org/10.1080/02723646.1999.10642693
  16. Kubota, T., Hashizume, H., Shige, S., Okamoto, K., Aonashi, K., Takahashi, N., Ushio, T., & Kachi, M. (2006). Global precipitation map using satelliteborne microwave radiometers by the GSMaP project: Production and validation. International Geoscience and Remote Sensing Symposium (IGARSS), 45(7), 2584–2587. https://doi.org/10.1109/IGARSS.2006.668
  17. Natadiredja, S., Sukarasa, I. K., & Sutapa, G. N. (2018). Validasi Curah Hujan Harian Berdasarkan Data Global Satellite Mapping of Precipitation (GSMaP) di Wilayah Bali dan Nusa Tenggara. Buletin Fisika, 19(1), 12–15
  18. Prabaningrum, R., & Nuriani, E. (2016). Identifikasi perubahan zona agroklimat metode oldeman Di Provinsi Jawa Barat. Bumi Indonesia, 5(4), 1–10
  19. Rahmadi, P. Z., & Santosa, B. (2018). Modal Sosial Petani Sawah Berlahan Sempit Dalam Pemenuhan Nafkah Rumah Tangga. Jurnal Analisa Sosiologi, 5(1). https://doi.org/10.20961/jas.v5i1.17986
  20. Rahman, R. N., & Indra. (2020). Validasi Performa Satelit Presipitasi GSMaP Dalam Mengestimasi Curah Hujan Di Jabodetabek. Jurnal Widya Climago, 2(2), 78
  21. Setiawan, D. (2018). Pengelompokan Zona Musim di Indonesia Berdasarkan Data Curah Hujan Menggunakan Time Series Based Clustering. https://repository.its.ac.id/56777/%0Ahttps://repository.its.ac.id/56777/1/062114400000071-Undergraduate_Theses.pdf
  22. Setiyoko, A., Osawa, T., & Nuarsa, I. W. (2019). Evaluation of GSMaP Precipitation Estimates Over Indonesia. Int. J. Environ. Geosci, 3(1), 26–43
  23. Susilokarti, D., Arif, S. S., Susanto, S., & Sutiarso, L. (2015). Identifikasi Perubahan Iklim Berdasarkan Data Curah Hujan di Wilayah Selatan Jatiluhur Kabupaten Subang, Jawa Barat. Jurnal Agritech, 35(01), 98. https://journal.ugm.ac.id/agritech/article/view/13038/15155

Last update:

No citation recorded.

Last update:

No citation recorded.