skip to main content

Review: Potential of Oil Palm Empty Fruit Bunches Waste to Become an Ultrafiltration Membrane for Clean Water Treatment

1Department of Chemical Engineering, Institut Teknologi Indonesia, Indonesia

2Chemical Engineering Study Program, Institut Teknologi Indonesia, Jl. Raya Puspiptek, Serpong, South Tangerang, Indonesia, Indonesia

3Department of Mechanical Engineering, Institut Teknologi Indonesia, Indonesia

Received: 15 Jan 2025; Revised: 1 Jun 2025; Accepted: 14 Jun 2025; Available online: 14 Jun 2025; Published: 22 Aug 2025.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Citation Format:
Abstract

The potential of oil palm empty fruit bunches (OPEFB) as a raw material for membrane production has not been fully explored. OPEFB waste contains a relatively high cellulose content, a natural polymer that can serve as a precursor for plastic and membrane synthesis. Membranes are semi-permeable barriers commonly employed in applications such as clean water purification and liquid waste treatment. To utilize cellulose from OPEFB, it must first be converted into cellulose acetate (CA) via an acetylation reaction. Cellulose acetate is a biodegradable polymer known for its hydrophilic nature, high chemical stability, and mechanical strength, making it a widely used material in membrane technology. Moreover, CA is suitable as a matrix for developing nanocomposite membranes with enhanced performance characteristics. Membranes are typically fabricated using the phase inversion technique, involving solvents such as acetone or dimethylformamide (DMF). The resulting membrane properties—including morphology, porosity, and chemical interactions—depend on the choice of polymer and additives in the casting solution. Additives such as nano-silica and polyethylene glycol (PEG) are often incorporated to improve tensile strength, increase hydrophilicity, and control pore size distribution. Optimizing the composition ratios of cellulose acetate, solvent, and additives is essential to achieve desirable properties, particularly for ultrafiltration (UF) applications. OPEFB offers promising potential as a sustainable, renewable resource for producing UF membranes, supporting circular economy principles and waste valorization in environmental applications.

Fulltext View|Download
Keywords: empty oil palm fruit bunches, cellulose, cellulose acetate, membrane, ultrafiltration

Article Metrics:

  1. Alfian Yulia Rahmat. Intan Syahbanu. Rudiyansyah. 2020. Membran Ultrafiltration Membrane of Polysulfone/TiO2 (PSf/TiO2) for Diesel Fuel Polluted Water Filtration. Jurnal Kartika Kimia. (1). (7-12)
  2. Apriani. R.. Rohman. T.. & Mustikasari. K. (2017). Sintesis dan Karakterisasi Membran Selulosa Asetat dari Tandan Kosong Kelapa Sawit (Synthesis and Characterization of Cellulose Acetate Membranes from Oil Palm Empty Fruit Bunches). Jurnal Riset Industri Hasil Hutan. 9(2).91-98
  3. Aniek Sri Handayani. Chrisvynlia. theo Doohan. Marcelinus Christwardana. Enjarlis. 2019. Cellulos triacetate synthesis from empty fruit bunches of oil palm’s cellulose. AIP Conference Proceedings 2175. 020075-1 – 020075-6
  4. Aniek Sri Handayani dkk. 2023. Pengembangan Produk Silika Nano Partikel Berbasis Abu Boiler Cangkang Sawit (Palm Kernel Shell ash) Untuk Aplikasi Biomedik. Grant Riset Sawit Tahun 2023. Ringkasan Hasil Penelitian hal 116 – 117
  5. Aniek Sri Handayani. James Herberta. Khumaeroha. Annisa Nurul Syabilaa. Athanasia Amanda Septevani. Ratnawati. 2024. Synthesis of Silica Nanoparticles Derived from Oil Palm Boiler Ashes Using Sol-gel Method. South African Journal of Chemical Engineering - Manuscript Draft- SAJCE-D-24-00040
  6. Ahmad. A.. Waheed. S.. Khan. S. M.. & e-Gul. S. (2018). Effect of PVP on the properties of cellulose acetate/PVP blend membranes fabricated through phase inversion process. Journal of Polymer Engineering. 38(8). 781-788
  7. Chen. J.. Zhang. M.. & Li. F. (2020). Enhanced performance of cellulose acetate membranes using TiO2 nanoparticles for water treatment. Desalination. 479. 114324
  8. Dikianur Alvianto. Fara Aulia Agustin Nurhadi. Angky Wahyu Putranto. Bambang Dwi Argo. Mochammad Bagus Hermanto. Yusuf Wibisono. 2022. Sintesis dan Karakterisasi Membran Selulosa Asetat dengan Penambahan Antibiofouling Alami Ekstrak Bawang Putih. Jurnal Penelitian Kimia. Vol. 18(2) 2022. 193-204
  9. Direktorat Jendral Perkebunan. “Statistik Perkebunan Non Unggulan Nasional 2020-2022.” 2020. ( https://ditjenbun.pertanian.go.id/template/uploads/2022/11/BUKU-STATISIK-NON-UNGGULAN-2020-2022.pdf)
  10. Dong. X.. Lu. D.. Harris. T.. & Escobar. I. (2021). Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development. Membranes. 11
  11. Gaol. M. R. L. L.. Sitorus. R.. Yanthi. S.. Surya. I.. & Manurung. R. (2013). Pembuatan selulosa asetat dari α-selulosa tandan kosong kelapa sawit. Jurnal Teknik Kimia USU. 2(3). 33-39
  12. Ibnu Tryansar Purba. Kalimaya Qolbi sani. Nur Sayekti. Sabela Sanata Ramadhani. Joko Waluyo. Sunu Herwi Pranoto. Mujtahid Kaavessina. 2023. Biofilm Fabrication from Cellulose Acetate of Oil Palm Empty Fruit Bunch and Corn Starch as Bio-polybag material for Eco-frendly Plantation. IOP Conf. Series: Earth and Enviromental Science 1217 (2023)012037
  13. Junoh. H.. Jaafar. J.. Nordin. N.. Ismail. A.. Othman. M.. Rahman. M.. Aziz. F.. Yusof. N.. & Daud. S. (2020). Porous polyether sulfone for direct methanol fuel cell applications: Structural analysis. International Journal of Energy Research. 45. 2277 - 2291
  14. Kahrs. C.. & Schwellenbach. J. (2020). Membrane formation via non-solvent induced phase separation using sustainable solvents: A comparative study. Polymer. 186. 122071
  15. Kaner. P.. Rubakh. E.. Kim. D.. & Asatekin. A. (2017). Zwitterion-containing polymer additives for fouling resistant ultrafiltration membranes. Journal of Membrane Science. 533. 141-159
  16. Kumar. S.. Guria. C.. & Mandal. A. (2015). Synthesis. characterization and performance studies of polysulfone-bentonite nanocomposite ultrafiltration membranes. Separation and Purification Technology. 150. 64-75
  17. Liu. Y.. Zhang. X.. & Wang. H. (2022). Development of cellulose acetate/chitosan blend membranes: Effect of chitosan on membrane properties and performance. Journal of Applied Polymer Science. 139(15). 52012
  18. Mamah. S.C.; Goh. P.S.; Ismail. A.F.; Suzaimi. N.D.; Yogarathinam. L.T.; Raji. Y.O.; El-badawy. T.H. Recent development in modification of polysulfone membrane for water treatment application. J. Water Process Eng. 2021. 40. 10183
  19. Madalina Oprea and Stefan Ioan Voicu. 2023. Cellose Acetate-Based Materials for Water treatment in the context of Circular Economy. Journal Water 2023. 15. 1860
  20. M.Topan Darmawan. Muthia Elma . M.Ihsan. 2018. Sintesis Dan Karakterisasi Selulosa Asetat Dari Alfa Selulosa Tandan Kosong Kelapa Sawit. Jukung Jurnal Teknik Lingkungan. 4 (1) : 50-55. 2018. p-ISSN : 2461-0437. e-ISSN : 2540-9131
  21. Murni. S. W.. 2010. Preparasi Membran Selulosa Asetat untuk Penyaringan Nira Tebu. Eksergi 10(2). 36. doi: 10.31315/e.v10i2.338
  22. Marlina. M.. Saiful. S.. Mustanir. M.. Saleha. S.. Fathurrahmi. F.. Murniana. M.. and Khairan. K.. 2017. Sintesis Membran Poliuretan Berbasis Bahan Alam. Syiah Kuala University Press. doi: 10.52574/syiahkualauniversitypress.354
  23. Mulder. M.. 1996. Basic Principles of Membrane Technology. Second Edition.pdf (Second Edi). Kluwer Academic Publishers
  24. Marino. T.. Blasi. E.. Tornaghi. S.. Nicolò. E.. & Figoli. A. (2018). Polyethersulfone membranes prepared with Rhodiasolv®Polarclean as water soluble green solvent. Journal of Membrane Science. 549. 192-204
  25. Mohammadi. T.. Saljoughi. E.. & Mousavi. S. M. (2019). Preparation and characterization of modified cellulose acetate membranes with polyethylene glycol additives. Desalination. 249(2). 850-854
  26. Pratama and K. Sa’diyah. “Pengaruh Jenis Biomassa Terhadap Karakteristik Asap Cair Melalui Metode Pirolisis.” Distilat: Jurnal Teknologi Separasi. vol. 8. no. 1. pp. 36–44. 2022. doi: 10.33795/distilat.v8i1.260
  27. Purkait. M. K.. Sinha. M. K.. Mondal. P.. & Singh. R. (2018). Introduction to Membranes. Stimuli Responsive Polymeric Membranes - Smart Polymeric Membrane: 25: 1–37
  28. Sri Handayani. Yuli Amalia Husnil. Aspiyanto. Puput Latifa. Eva Fitriyani. 2017. Pembuatan Membran Selulosa Asetat untuk Aplikasi Pemekatan Jus Buah. Majalah Polimer Indonesia. Vol 20 No. 1. Juni 2017. hal 38-49
  29. Wang. H.. Wang. L.. Liu. C.. Xu. Y.. Yan. Z.. Zhou. Y.. Gu. S.. Xu. W.. & Yang. H. (2019). Effect of temperature on the morphology of poly (lactic acid) porous membrane prepared via phase inversion induced by water droplets. International journal of biological macromolecules. 133. 902-910
  30. Wang. Y.. Li. H.. & Dong. R. (2021). Influence of polyethylene glycol addition on the performance of cellulose acetate membranes. Separation and Purification Technology. 258. 117996
  31. Wang. Z.. Ma. J.. & Tang. C. Y. (2021). "Design and Operation of Multi-media Filters: Principles and Applications." Water Science and Technology. 83(7). 1567-1580
  32. Yao. M.. Ren. J.. Akther. N.. Woo. Y.. Tijing. L.. Kim. S.. & Shon. H. (2019). Improving membrane distillation performance: Morphology optimization of hollow fiber membranes with selected non-solvent in dope solution. Chemosphere. 230. 117-126
  33. Zhang. Y.. Wang. J.. Gao. F.. Chen. Y.. & Zhang. H. (2020). Effect of crosslinking on the properties of cellulose acetate membranes. Journal of Applied Polymer Science. 137(23). 48840

Last update:

No citation recorded.

Last update:

No citation recorded.