skip to main content

Investigating flavonoids derived from Tribulus terrestris L. as prospective candidates for Alzheimer's disease treatment: Molecular docking modeling of their interactions with physiological system receptors

1Environmental Biomonitoring Laboratory, Bizerta Faculty of Sciences, Carthage University, 7021 Zarzouna, Bizerta, Tunisia

2Higher School of Food Industries (ESIAT) Carthage University, Tunis, Tunisia

3Department of Environmental Science, College of Energy and Environmental Science, Al-Karkh University of Science, Baghdad 10081, Iraq

Received: 2 Feb 2024; Revised: 12 Mar 2024; Accepted: 18 Mar 2024; Available online: 26 Mar 2024; Published: 1 Aug 2024.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Citation Format:
Abstract

Alzheimer's disease (AD) stands as the primary cause of dementia, marked by its neurodegenerative essence, which results in cognitive impairment associated with memory and a decline in functionality. Currently there is no drug which can permanently cure the nervous lesions as well as completely eradicate this pathogenesis. The aim of this research is to examine the acetylcholinesterase activity of flavonoids identified in Tribulus terrestris L. (Tt) by predicting ligand-receptor binding. The research process begins with the preparation of protein and ligand structures. Subsequently, docking is performed, interaction between protein-ligands is then analyzed and visualized. Four phytoconstituents of Tt were chosen, and molecular docking simulations revealed that all four compounds exhibited good binding affinities. Based on the predicted ADMET values using the Lipinski rule, compounds with potentially good activity were identified. The results suggest that these compounds may exhibit anti-acetylcholinesterase activity.

Fulltext View|Download
Keywords: AChE; ADME prediction; in-silico analysis; physiology-binding receptor; rutin

Article Metrics:

  1. Abdulfatai, U., Uzairu, A., Uba, S. (2018). Molecular docking and quantitative structure-activity relationship study of anticon-vulsant activity of aminobenzothiazole derivatives. Beni-Suef University Journal of Basic and Applied Sciences, 1, 7(2), 204-14
  2. Alam, M.S., Ahmed, J.U., Lee, D.U. (2016). Biological features, drug-likeness, pharmacokinetic properties, and docking of 2-arylidenehydrazinyl-4-arylthiazole analogues. Applied Biological Chemistry, 59(2),181-92
  3. Akachukwu, I., Amara, EE. (2019). In-silico study of flavonoids from Cassia tora as potential anti-psoriatic agent. Journal of Ap-plied Pharmaceutical Science, 9(04), 082-7
  4. Al-Bayati FA., Al-Mola HF. (2008) Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq. Journal of Zhejiang University Science B, 9(2), 154-9
  5. Anagha, B., Tai, B., Trupti, G., Anushka, Ku., Aakanksha, K., Ganesh, D., Sachin, R. (2022). Molecular Docking – Useful Tool in Drug Discovery. Asian Journal of Research in Chemistry,15(2),129-2
  6. Asha, M., & Devaraj, S. N. (2011). Investigation of the bioavailability enhancement mechanism of naringenin with a novel dihy-droxy flavone (DHF) derivative using Caco-2 cell line and rat model. European Journal of Pharmaceutical Sciences, 44 (5), 552-560. [DOI: 10.1016/j.ejps.2011.09.006]
  7. Avanti, K,. Galande, S., Rohane, H., (2021). In silico Molecular docking analysis in Maestro Software. Asian J. Research Chem, 14(1), 97-100
  8. Bajorath, J. (2002). Integration of virtual and high-throughput screening. Nature Reviews Drug Discovery, 1(11), 882-894. [DOI: 10.1038/nrd947]
  9. Beg, M., Athar, F. (2020). Pharmacokinetic and molecular docking studies of Achyranthes aspera phyto-compounds to exploring potential anti-tuberculosis activity. J Bacteriol Mycol Open Access, 8(1)18-27
  10. Bhagyashree, L., Jejurikar, Sachin., H. Rohane. (2021). Drug Designing in Discovery Studio. Asian J. Re-search Chem, 14(2), 135-138
  11. Bouabdallah, S., Sghaier, R.M., Selmi, S., Khlifi, D., Laouini, D., Ben-Attia, M. (2016). Current approaches and challenges for chemical characterization of inhibitory effect against cancer cell line isolated from Gokshur extract. J. Chromatogr. B, 279–285
  12. Bouabdallah, S., Laouini, D., Bouzouita, N., El Bok, S., Sghaier, R.M., Selmi, S., Ben-Attia, M. (2018) Separation and evaluation of natural antileishmanial potential against Leishmania major and infantum isolated from the Tunisia strains. Bangladesh J. Pharmacol, 13, 74–81
  13. Bouabdallah, S., Al-Maktoum, A., Amin, A. (2023). Steroidal Saponins: Naturally Occurring Compounds as Inhibitors of the Hallmarks of Cancer. Cancers, 15, 3900
  14. Bouabdallah, S., Brinza, I., Boiangiu, R.S., Ibrahim, M.H., Honceriu, I., Al-Maktoum, A., Cioanca, O., Hancianu, M., Amin, A., Ben-Attia, M., Lucian, Hritcu. (2024). The Effect of a Tribulus-Based For-mulation in Alleviating Cholinergic System Im-pairment and Scopolamine-Induced Memory Loss in Zebrafish (Danio rerio): Insights from Molecular Docking and In Vitro/In Vivo Approaches. Phar-maceuticals, 17(2), 200. https://doi.org/10.3390/ph17020200
  15. Cai, L., Wu, Y., Zhang, J., Pei, F., Xu, Y., Xie, S., Xu, D. (2001). Steroidal saponins from Tribulus terrestris. Planta medica, 67(02),196-8
  16. Chhatre, S., Nesari, T., Somani, G., Kanchan, D., Sathaye, S. (2014). Phytopharmacological overview of Tribulus terrestris. Phar-macognosy reviews, 8(15), 45
  17. Daina, A., Michielin, O., Zoete, V. (2017). Swiss ADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep, 7, 42717 [CrossRef]
  18. Dallakyan, S., Olson, AJ. (2015). Small-molecule library screening by docking with PyRx. In Chemical biology, 243-250. Humana Press, New York, NY
  19. Gleeson, M., P. (2008). Generation of a set of simple, interpretable ADMET rules of thumb. Journal of Medicinal Chemistry, 51(4), 817-834. [DOI: 10.1021/jm701122q]
  20. Goodnow, Jr. (2008). The importance of synthetic accessibility and ease of synthesis in the design of me-dicinal compounds. Future Medicinal Chemistry, 1(6), 913-915. [DOI: 10.4155/fmc.08.65]
  21. Hussein, G., Miyashiro, H., Nakamura, N., Hattori, M., Kawahata, T., Otake, T., Kakiuchi, N., Shimotohno, K. (1999). Inhibitory effects of Sudanese plant extracts on HIV‐1 replication and HIV‐1 protease. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 13(1), 31-6
  22. Isyaku, Y., Uzairu, A., Uba, S. (2020). Computational studies of a series of 2-substituted phenyl-2-oxo-, 2-hydroxyl-and 2-acylloxyethylsulfonamides as potent anti-fungal agents. Heliyon,1, 6(4), e03724
  23. Kar, S., Leszczynski, J. (2020). Open access in silico tools to predict the ADMET profiling of drug candi-dates. Expert Opinion on Drug Discovery, 1, 15(12), 1473-87
  24. Karthik, D., Arunachalam, S., Sivanandy P. (2013). Molecular Docking Studies and in-vitro Acetylcholin-esterase Inhibition by Terpenoids and Flavonoids. Asian J. Research Chem, 6 (11), 1011-1017
  25. Kim, T. S., & Kwon, Y. J. (2013). Recent advances in catechol-containing polymers and their biomedical, pharmaceutical, and materials applications. Journal of Industrial and Engineering Chemistry, 19 (1), 12-24. [DOI: 10.1016/j.jiec.2012.08.005]
  26. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Bolton, E.E. (2021). New data content and im-proved web interfaces. Nucleic Acids Res, 49, 1388–1395. [CrossRef]
  27. Li, A.P. (2001). Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today, 6, 357–366
  28. Lin, Y. S., Rich, K. J., Jérome, F., Johnson, R., James, J. L., Mak, D. O., Chen-Izu, Y. (2018). Catechol metabolites of neurotrans-mitters as agonists of mitochondrial ATP-sensitive potassium channels. Journal of Molecular and Cellular Cardiology, 115, 58-66. [DOI: 10.1016/j.yjmcc.2017.12.009
  29. Lipinski, C. A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today Technologies, 1(4), 337-341. [DOI: 10.1016/j.ddtec.2004.11.007]
  30. Madhavi, M., Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., Sherman, W. (2013). Protein and ligand preparation: param-eters, protocols, and influence on virtual screening enrichments. Journal of com-puter-aided molecular design, 27(3), 221-34
  31. Neha, Subhash., Patil, Sachin., H. Rohane. (2021). Organization of Swiss Dock: In study of Computational and Molecular Docking Study, Asian J. Research Chem, 14(2), 145-148
  32. Om, S., Pankaj, K., Singh. (2021). Molecular docking analysis: Basic technique to predict drug-receptor interactions, Editor(s): Om Silakari, Pankaj Kumar Singh, Concepts and Experimental Protocols of Modelling and Informatics in Drug Design, Academic Press. 131-155
  33. Opo, FA., Rahman, MM., Ahammad, F., Ahmed, I., Bhuiyan, MA., Asiri, AM. (2021). Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identi-fication of natural anti-cancer agents targeting XIAP protein. Scientific reports, 18, 11(1),1-7
  34. Ou-Yang, SS., Lu, JY., Kong, XQ., Liang, ZJ., Luo, C., Jiang H. (2012). Computational drug discovery. Acta Pharmacologica Sinica, 33(9),1131-40
  35. Patel, A., Soni, A., Siddiqi, NJ., Sharma P. (2019). An insight into the anticancer mechanism of Tribulus terrestris extracts on human breast cancer cells. 3 Biotech, 9(2),1-0
  36. Patel, A., Bhatt, M., Soni, A., Sharma, P. (2021). Identification of steroidal saponins from Tribulus terrestris and their in silico docking studies. Journal of Cellular Biochemistry,122 (11),1665-85
  37. Pawar, SS., Rohane, SH. (2021). Review on discovery studio: an important tool for molecular docking. Asian J Res Chem,12(14), 86-8
  38. Pintilie, L., Stefaniu, A. (2019). In Silico Drug Design and Molecular Docking Studies of Some Quinolone Compound. In Molecular Docking and Molecular Dynamics 22. Intech Open
  39. Rao, VS., Srinivas, K. (2011). Modern drug discovery process: An in-silico approach. Journal of bioinfor-matics and sequence analysis, 30, 3(5), 89-94
  40. Reymond, JL., Ruddigkeit, L., Blum, L., & van Deursen, R. (2012). The enumeration of chemical space. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(5), 717-733. [DOI: 10.1002/wcms.90]
  41. Rutuja, P., Pawar, S., Rohane, H. (2021). Role of Autodock vina in PyRx Molecular Docking. Asian J Re-search Chem, 14(2), 132-134
  42. Sanket, R., Ketaki, S., Namdeo, S., Nagesh, A. (2021). Cosmeceuticals and Nanotechnology in Beauty Care Products. Research Journal of Tropical and Cosmetic Sciences, 12 (2), 93-1
  43. Silviana, H., Dolih, G., Muhammad, A., Dwi, S., Fitra, R., Resmi, M. (2022). In Silico Prediction of Me-tabolite in Petroselinum Crispum in Inhibiting Androgen Receptor as Treatment for Alopecia. Re-search Journal of Pharmacy and Technology,15(3), 1211-8
  44. Ștefănescu, R., Tero-Vescan, A., Negroiu, A., Aurică, E., Vari, CE. (2020). A Comprehensive Review of the Phytochemical, Pharmacological, and Toxicological Properties of Tribulus terrestris L. Biomolecules, 12, 10 (5), 752
  45. Uday, M., Satpute, S., Rohane H. (2021). Efficiency of AUTODOCK: Insilico study of Pharmaceutical Drug Molecules. Asian J. Research Chem, 14(1), 92-96
  46. Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45 (12), 2615-2623. [DOI: 10.1021/jm020017n]
  47. Yang, H., Lou, C., Sun, L., Li, J. Cai, Y., Wang, Z., Tang, Y. (2019). Sdmet SAR 2.0: Web-service for pre-diction and optimization of chemical ADMET properties. Bioinformatics, 35, 1067–1069. [CrossRef]
  48. Zhang, JD., Xu, Z., Cao, YB., Chen, HS., Yan, L. (2006). An MM, Gao PH, Wang Y, Jia XM, Jiang YY. Antifungal activities and action mechanisms of compounds from Tribulus terrestris L. Journal of ethnopharmacology, 3103 (1), 76-84.

Last update:

No citation recorded.

Last update:

No citation recorded.