skip to main content

Bead milling liberates the antioxidant properties of nanosized tubers of Vernonia guineensis Benth (Asteraceae)

1Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, PO Box 2701, Cameroon

2Laboratory of Pharmacology and toxicology, Doctoral Training Unit of Health Sciences, university of Douala, PO Box 2701, Cameroon

3Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany

4 Department of Animal Biology and Physiology, Faculty of Science, University of Douala, PO Box 24157 Douala, Cameroon

5 Biology and Physiology Laboratory of Plant Sciences, Faculty of Sciences, University of Douala, PO Box. 24157 Douala, Cameroon

6 Laboratory of Pharmacochemistry and Natural Pharmaceutical Substances, Doctoral Training Unit of Health Sciences, University of Douala, PO Box 2701, Cameroon

View all affiliations
Received: 15 Jul 2023; Accepted: 28 Sep 2023; Available online: 1 Oct 2023; Published: 1 Apr 2024.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Citation Format:
Abstract

Vernonia guineensis Benth. (Asteraceae), locally known as ‘African ginseng’, is an herbaceous plant with various therapeutic properties, sold by herbalists, and used in several traditional African preparations. Nanosizing has the capability to potentiate those preparations in their pharmacological properties. Premilling and extensive grinding using a planetary ball mill were used to reduce the size of V. guineensis tubers towards antioxidant studies. Water was used as an environmental friendly, cost effective solvent and dispersant to generate a nanocolloidal suspension of V. guineensis tubers. Size and size distribution were determined via photon correlation spectroscopy at room temperature which allows discussion on stability by Zeta potential and polydispersity index. Phytochemical screening shows presence of alkaloids, coumarins, polyphenol, saponins, tanins, terpenes, and anthraquinones. The distribution curve in water shows a polydispersed system with large hydrodynamic particles of size close to 1000 nm and a Z-average of 484.5 nm. The preparation separate in two phases with polydispersity index 0.217 for the supernatant and 0.543 for the suspension. In the supernatant and suspension, the particles zeta potential were -12.3 mV and -13.7mV respectively. The Mastersizer analysis indicates that there are smaller particles in volume in the supernatant than in the suspension. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity shows an increase in antioxidant activity, compared to that of ascorbic acid, in the nanoformulated state. These findings allow us to conclude on the potential of size reduction when compared to solvent extraction in pharmacologic preparations.

Fulltext View|Download
Keywords: Vernonia guineensis Benth.; ball milling; colloids; antioxidant activity
Funding: DAAD

Article Metrics:

  1. Abraham, A.M., Alnemari, R.M., Jacob, C., and Keck, C.M., 2020. PlantCrystals-Nanosized Plant Material for Improved Bioefficacy of Medical Plants. Materials, 13(19), 4368. https://doi.org/10.3390/ma13194368
  2. Ayoola, G.A., Coker, H.B., Adesegun, S.A., Adepoju-Bello, A.A., Obaweya, K., Ezennia, E.C., Atangbayila, T.O., 2008, Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in southwestern Nigeria. Trop. J. Pharm. Res, 7, 1019–1024. https://doi.org/10.4314/tjpr.v7i3.14686
  3. Banso, A., and Adeyemo, S., 2006. Phytochemical screening and antimalarial assessment of Abutilon mauritianum, Bacopa monnifera and Datura stramonium. Biokemistri, 18, 39-44. https://doi.org/10.4314/biokem.v18i1.56390
  4. Brand-Williams, W., Cuvelier, M.E., and Berset, C., 1995. Use of a free radical method to evaluate antioxidant activity LWT - Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  5. Borthagaray, G., Mondelli, M., Facchin, G., and Torre, M.H., 2018. Chapter 8 - Silver-containing nanoparticles in the research of new antimicrobial agents against ESKAPE pathogens, Editor(s): Alexandru Mihai Grumezescu, Inorganic Frameworks as Smart Nanomedicines, William Andrew Publishing. 317-386. https://riquim.fq.edu.uy/items/show/5734
  6. Burkill, B.M., 1985. ‘The Useful Plants of West Tropical Africa’, Roy. Bot. Gardens, 1
  7. Clogston, J.D., and Patri, A.K., 2011. Zeta Potential Measurement Scott E. McNeil (ed.), Characterization of Nanoparticles Intended for Drug Delivery, Methods in Molecular Biology, 697, https://doi.org/10.1007/978-1-60327-198-1_6 63-70 2011
  8. Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., and Mozafari, M.R., 2018. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics. 10(2), 57. https://doi.org/10.3390/pharmaceutics10020057
  9. Darkal, A.K., Zuraik Mhd, M., Ney, Y., Nasim, M.J., and Jacob, C., 2021. Unleashing the biological potential of Fomes fomentarius via dry and wet Milling. Antioxidants, 10(2), 303. https://doi.org/10.3390/antiox10020303
  10. Feduraev, P., Chupakhina, G., Maslennikov, P., Tacenko, N., and Skrypnik, L., 2019. Variation in Phenolic Compounds Content and Antioxidant Activity of Different Plant Organs from Rumex crispus L. and Rumex obtusifolius L. at Different Growth Stages. Antioxidants (Basel). 8(7), 237. https://doi.org/10.3390/antiox8070237
  11. García-Pérez, M.E., Kasangana, P.B., and Stevanovic, T., 2017. Bioactive Polyphenols for Diabetes and Inflammation in Psoriasis Disease, in Studies in Natural Products Chemistry, 52, 231-268. https://doi.org/10.1016/B978-0-444-63931-8.00006-0
  12. Griffin, S., Masood, M.I., Nasim, M.J., Sarfraz, M., Ebokaiwe, A.P., Schäfer, K.H., Keck, C.M., and Jacob, C., 2017a. Natural Nanoparticles: A Particular Matter Inspired by Nature. Antioxidants (Basel). 7(1), 3 https://doi.org/10.3390/antiox7010003
  13. Griffin, S., Tittikpina, N.K., Al-Marby, A., Alkhayer, R., Denezhkin, P., Witek, K., Gbogbo, K.A., Batawila, K., Duval, R.E., Nasim, M.J., Awadh-Ali, N.A., Kirsch, G., Chaimbault, P., Schäfer, K.-H., Keck, C.M., Handzlik, J., and Jacob, C., 2016. Turning waste into value: Nanosized natural plant materials of Solanum incanum L. and Pterocarpus erinaceus poir with promising antimicrobial activities. Pharmaceutics, 8, 11. https://doi.org/10.3390/pharmaceutics8020011
  14. Griffin, S., Alkhayer, R., Mirzoyan, S., Turabyan, A., Zucca, P., Sarfraz, M., Nasim, M.J., Trchounian, A., Rescigno, A., Keck, C.M., and Jacob, C., 2017b. Nanosizing Cynomorium: Thumbs up for Potential Antifungal Applications. Inventions, 2, 24 https://doi.org/10.3390/inventions2030024
  15. Hannah, C., Simone, P., John, S., Martha, T., and Josiemer, M., 2018. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Frontiers in Nutrition, 5, 1-9. https://doi.org/10.3389/fnut.2018.00087
  16. Harborne, A.J., 1998. Phytochemical methods a guide to modern techniques of plant analysis, Springer Science et Business Media
  17. Hartmann, N.B., Jensen, K.A., Baun, A., Rasmussen, K., Rauscher, H., Tantra, R., Cupi, D., Gilliland, D., Pianella, F., and Riego Sintes, J.M., 2015. Techniques and protocols for dispersing nanoparticle powders in aqueous media-is there a rationale for harmonization? J. Toxicol. Environ. Health Part B, 18, 1–28. https://doi.org/10.1080/10937404.2015.1074969
  18. Hegazy, A.E., and Ibrahium, M.I., 2012. Antioxidant Activities of Orange Peel Extracts. World Applied Sciences Journal, 18(5), 684-688. https://doi.org/10.5829/idosi.wasj.2012.18.05.64179
  19. Ijaz, I., Gilani, E., Nazir, A., and Bukhari, A., 2020. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles, Green Chemistry Letters and Reviews, 13(3), 223-245, https://doi.org/10.1080/17518253.2020.1802517
  20. Ismail, M., Noor-Ul-Haq, Ali, S., Ali, I., Shaheen, R., Murtaza, G., and Abdurrazaq, 2017. Qualitative analysis for phytochemicals of selected medicinal plants from Gilgit-Baltistan, Pakistan Asian Journal of Chemistry. 29(9), 1929-1932. https://doi.org/10.14233/ajchem.2017.20583
  21. Jahan, N., Aslam, S., ur Rahman, K., Fazal, T., Anwar, F., and Saher, R., 2016. Formulation and characterisation of nanosuspension of herbal extracts for enhanced antiradical potential, Journal of Experimental Nanoscience, 11(1), 72-80, https://doi.org/10.1080/17458080.2015.1025303
  22. Jideani, A.I.O., Silungwe, H., Takalani, T., Omolola, A.O., Udeh, H.O., and Anyasi, T.A., 2021. Antioxidant-rich natural fruit and vegetable products and human health, International Journal of Food Properties, 24(1), 41-67, https://doi.org/10.1080/10942912.2020.1866597
  23. Kabtni, S.S., Dorra, D., Ines, B.B., Mattew, S., Trifi-Farah, N., Fauconnier, M.-L., and Marghali, S., 2020. Influence of climate variation on phenolic composition and antioxidant capacity of Medicago minima populations. Sci Rep. 10, 8293. https://doi.org/10.1038/s41598-020-65160-4
  24. Khalid, K., Tan, X., Zaid, H.F.M., Tao, Y., Chew, C.L., Chu, D.-T., Lam, M.K., Ho, Y.-C., Lim, J.W. and Wei, L.C., 2020. Advanced in developmental organic and inorganic nanomaterial: a review, Bioengineered, 11, 1, 328-355, https://doi.org/10.1080/21655979.2020.1736240
  25. Kuete, V., and Efferth, T., 2010. Cameroonian medicinal plants: pharmacology and derived natural products. Front Pharmacol, 1, 123. Published 2010 Oct 25. https://doi.org/10.3389/fphar.2010.00123
  26. Lim, J., Yeap, S.P., Che, H.X., and Low, S.C., 2013. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett., 8, 381. https://doi.org/10.1186/1556-276X-8-381
  27. Loh, Z.H., Samanta, A.K., and Heng, P.W.S., 2015. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian Journal of Pharmaceutical Sciences, 10(4), 255-274. https://doi.org/10.1016/j.ajps.2014.12.006
  28. Noumi, E., 2010. Ethno medicines used for treatment of prostatic disease in Foumban, Cameroon. African J. of Pharmacy and Pharmacology, 4(11), 793-805
  29. Mbosso Teinkela, J.E., Yoyo Ngando, L.P., Bamal, H.D., Ekounè Kamè, E., Mpondo Mpondo, E.A., Assob Nguedia, J.C., and Fannang, S.V., 2023. Evaluation of in vitro antiplasmodial, antiinflammatory activities and in vivo oral acute toxicity of Trichoscypha acuminata Engl (Anacardiaceae) stem bark. National Journal of Pharmaceutical Sciences, 3(1), 107-114
  30. Miyazawa, T., Itaya, M., Burdeos, G.C., Nakagawa, K., and Miyazawa, T., 2021. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int. J. Nanomedicine, 16, 3937-3999. https://doi.org/10.2147/IJN.S298606
  31. Mukherjee, P.K., 2019. Phyto-Pharmaceuticals, Nutraceuticals and Their Evaluation, in Quality Control and Evaluation of Herbal Drugs, Evaluating Natural Products and Traditional Medicine, 707-722
  32. Podkowinska, A., and Formanowicz, D., 1997. Chronic Kidney Disease as Oxidative Stress-and Inflammatory-Mediated Cardiovascular Disease. Antioxidants, 2020; 9: 752; doi: 10.3390/antiox9080752
  33. Sies H. Oxidative stress: oxidants and antioxidants. Exp. Physiol, 82(2), 291-5. https://doi.org/10.1113/expphysiol.1997.sp004024
  34. Ramachandraiah, K., and Chin, K.B., 2016. Evaluation of ball-milling time on the physicochemical and antioxidant properties of persimmon by-products powder, Innovative Food Science & Emerging Technologies. 37, 115-124, https://doi.org/10.1016/j.ifset.2016.08.005
  35. Rajpoot, K., and Tekade, R.K., 2019. Chapter 10 - Microemulsion as drug and gene delivery vehicle: an inside story. Rakesh K. Tekade Ed., In Advances in Pharmaceutical Product Development and Research, Drug Delivery Systems, Academic Press, 455-520, https://doi.org/10.1016/B978-0-12-814487-9.00010-7
  36. Raval, N., Maheshwari, R., Kalyane, D., Youngren-Ortiz, S.R., Chougule, M.B., Tekade, R.K., 2019. Chapter 10 - Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development, Academic Press, Basic Fundamentals of Drug Delivery, Advances in Pharmaceutical Product Development and Research, 369-400. https://doi.org/10.1016/B978-0-12-817909-3.00010-8
  37. Sadat, S.M., Jahan, S.T., and Haddadi, A., 2016. Effects of size and surface charge of polymeric nanoparticles on in vitro and in vivo applications. J. Biomater. Nanobiotechnol., 7, 91. https://doi.org/10.4236/jbnb.2016.72011
  38. Sarfaraz, D., Rahimmalek, M., and Saeidi, G., 2021. Polyphenolic and molecular variation in Thymus species using HPLC and SRAP analyses. Sci Rep., 11(1), 5019. https://doi.org/10.1038/s41598-021-84449-6
  39. Shahbaziniaz, M., Foroutan, S.M., and Bolourchian, N., 2013. Dissolution rate enhancement of clarithromycin using ternary ground mixtures: nanocrystal formation. Iran J. Pharm. Res., 12(4), 587-598. PMID: 24523739; PMCID: PMC3920702
  40. Sharifi-Rad, M., Anil Kumar, N.V., Zucca, P., Varoni, E.M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P.V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., El Beyrouthy, M., Polito, L., Iriti, M., Martins, N., Martorell, M., Oana Docea, A., Setzer, W.N., Calina, D., Cho, W.C., and Sharifi-Rad, J., 2020. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol., 11, 694. https://doi.org/10.3389/fphys.2020.00694
  41. Singleton, V.L., Orthofer, R., and Lamuela-Raventós, R.M., 1999. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent Methods in Enzymology, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  42. Toyang, N.J., Wabo, H.K., Ateh, E.N., Davis, H., Tane, P., Kimbu, S.F., Sondengam, L.B., and Bryant, J., 2012. In vitro anti-prostate cancer and ex vivo antiangiogenic activity of Vernonia guineensis Benth. (Asteraceae) tuber extracts. Journal of Ethnopharmacology, 141(3), 866-871. https://doi.org/10.1016/j.jep.2012.03.021
  43. Toyang, N.J., Ateh, E.N., Davis, H., Tane, P., Sondengam, L.B., Bryant, J., and Verpoorte, R., 2013a. In vivo antiprostate tumor potential of Vernonia guineensis Benth. (Asteraceae) tuber extract (VGDE) and the cytotoxicity of its major compound pentaisovaleryl sucrose. Journal of Ethnopharmacol., 150(2), 724–728. https://doi.org/10.1016/j.jep.2013.09.028
  44. Toyang, N.J., Krause, M.A., Fairhurst, R.M., Tane, P., Bryant, J., and Verpoorte, R., 2013b, Antiplasmodial activity of sesquiterpene lactones and a sucrose ester from Vernonia guineensis Benth. (Asteraceae). Journal of Ethnopharmacol., 147(3), 618–621. https://doi.org/10.1016/j.jep.2013.03.051
  45. Toyang, N.J., Wabo, H.K., Ateh, E.N., Davis, H., Tane, P., Sondengam, L.B., Bryant, J., and Verpoorte, R., 2013c. Cytotoxic sesquiterpene lactones from the leaves of Vernonia guineensis Benth. (Asteraceae), Journal of Ethnopharmacol. 146(2), 552–556. https://doi.org/10.1016/j.jep.2013.01.022
  46. Vaso, M., Ali, W., Masood, M.I., Muhammad Jawad Nasim, M.J., Lilischkis, R., Schäfer, K.-H., Schneider, M., Papajani, V.T., and Jacob, C., 2021. Nanosizing Nigella: A cool alternative to liberate biological activity, Current Nutraceuticals, 2, 37-46. https://doi.org/10.2174/2665978601999200930143010
  47. Wouamba, C.N.S., Mouthé Happi, G., Nguiam Pouofo, M., Tchamgoue, J., Jouda, J.B., Longo, F., Ndjakou Lenta, B., Sewald, N., and Fogue Kouam, S., 2020a. Antibacterial Flavonoids and Other Compounds from the Aerial Parts of Vernonia guineensis Benth. (Asteraceae). Chem. Biodivers., 17(9), e2000296. https://doi.org/10.1002/cbdv.202000296
  48. Wouamba, S.T.N., Happia, G.M., Lenta, B.N., Sewald, N., Kouam, S.F., 2020b. Vernoguinamide: A new ceramide and other compounds from the root of Vernonia guineensis Benth. and their chemophenetic significance Biochemical Systematics and Ecology, 88, 103988 https://doi.org/10.1016/j.bse.2019.103988
  49. Yeo, D., Dinica, R., Yapi, H.F., Furdui, B., Praisler, M., Djaman, A.J., and N’Guessan, J.D., 2011. Évaluation de l’activité anti-inflammatoire et screening phytochimique des feuilles de Annona senegalensis. Thérapie, 66(1), 73–80. https://doi.org/10.2515/therapie/2010076

Last update:

No citation recorded.

Last update:

No citation recorded.