skip to main content

Effects affecting ammonia removal in synthetic wastewater by locally isolated Rhodobacter sp strain A1

Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Received: 11 Jul 2023; Revised: 4 Oct 2023; Accepted: 18 Nov 2023; Available online: 5 Dec 2023; Published: 1 Apr 2024.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Citation Format:
Abstract

This research focused on the effects affecting ammonia removal in synthetic wastewater by Rhodobacter sp. strain A1 using one factor at a time method (OFAT). Rhodobacter sp. strain A1 are able to remove ammonia from synthetic wastewater due to its ability to assimilate ammonia. The ammonia removal experiment was conducted under different factors; Rhodobacter sp. strain A1 inoculum size (2%, 4%, 6%), incubation temperature (20°C, 25°C, 30°C, 37°C, 40°C), initial pH of synthetic wastewater (5,6,7,8,9) and initial NH4Cl concentration (5 mg/L, 10 mg/L, 15 mg/L) for four days of incubation period. Then, the solution was tested using Nessler reagent which will produce yellow colour when it reacts with ammonia. The intensity of colour is proportional to the ammonia concentration. This experiment was followed by ammonia quantitative analysis via spectrophotometer at 425 nm. The results obtained were then calculated to get the percentage of ammonia removal by PNSB. The result revealed that the bacterium can achieved 97.90 % efficiency of total ammonia removal at optimum growth condition with 6% of inoculum size, incubation temperature at 30°C and initial pH 7. As a conclusion, this Rhodobacter sp. strain A1 can therefore serve as a good candidate in wastewater treatment for ammonia removal.

Fulltext View|Download
Keywords: ammonia; Purple non-sulfur bacteria; wastewater

Article Metrics:

  1. Adeniyi, A.; Bello, I.; Mukaila, T.; Sarker, N.C.; Hammed, A. Trends in Biological Ammonia Production. BioTech 2023, 12, 41. https://doi.org/10.3390/biotech12020041
  2. Batista, Bueno M., & Dixon, R. (2019). Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit. Biochemical Society Transactions, 47(2), 603-614
  3. Bolay, P., Muro-Pastor, M. I., Florencio, F. J., & Klähn, S. (2018). The distinctive regulation of cyanobacterial glutamine synthetase. Life, 8(4), 52
  4. Cerruti, M., Stevens, B., Ebrahimi, S., Alloul, A., Vlaeminck, S. E., & Weissbrodt, D. G. (2020). Enrichment and aggregation of purple non-sulfur bacteria in a mixed culture sequencing-batch photobioreactor for biological nutrient removal from wastewater. Frontiers in bioengineering and biotechnology, 8, 1432
  5. Chen, J., Wei, J., Ma, C., Yang, Z., Li, Z., Yang, X., Wang, M., Zhang, H., Hu, J., & Zhang, C. (2020). Photosynthetic bacteria-based technology is a potential alternative to meet sustainable wastewater treatment requirement? In Environment International (Vol. 137). https://doi.org/10.1016/j.envint.2019.105417
  6. Hu, X., Su, J., Ali, A., Wang, Z., & Wu, Z. (2021). Heterotrophic nitrification and biomineralization potential of Pseudomonas sp. HXF1 for the simultaneous removal of ammonia nitrogen and fluoride from groundwater. Bioresource Technology, 323. https://doi.org/10.1016/j.biortech.2020.124608
  7. Huang, X., Ni, J., Yang, C., Feng, M., Li, Z., & Xie, D. (2018). Efficient ammonium removal by bacteria rhodopseudomonas isolated from natural landscape water: China case study. Water (Switzerland), 10(8). https://doi.org/10.3390/w10081107
  8. Idi, A., Ibrahim, Z., Mohamad, S. E., & Majid, Z. A. (2015). Biokinetics of nitrogen removal at high concentrations by Rhodobacter sphaeroides ADZ101. International Biodeterioration and Biodegradation, 105. https://doi.org/10.1016/j.ibiod.2015.09.014
  9. Jeong, H., Park, J., & Kim, H. (2013). Determination of NH+ in environmental water with interfering substances using the modified nessler method. Journal of Chemistry. https://doi.org/10.1155/2013/359217
  10. Kaftan, D., Bína, D., & Koblížek, M. (2019). Temperature dependence of photosynthetic reaction centre activity in Rhodospirillum rubrum. Photosynthesis Research, 142(2). https://doi.org/10.1007/s11120-019-00652-7
  11. Lu, H., Zhang, G., He, S., Zhao, R., & Zhu, D. (2021). Purple non-sulfur bacteria technology: a promising and potential approach for wastewater treatment and bioresources recovery. World Journal of Microbiology and Biotechnology, 37(9), 1-15
  12. Liu, Y., Ngo, H. H., Guo, W., Peng, L., Wang, D., & Ni, B. (2019). The roles of free ammonia (FA) in biological wastewater treatment processes: A review. Environment international, 123, 10-19
  13. Bolay, P., Muro-Pastor, M. I., Florencio, F. J., & Klähn, S. (2018). The distinctive regulation of cyanobacterial glutamine synthetase. Life, 8(4), 52
  14. Morrissy, J. G., Currell, M. J., Reichman, S. M., Surapaneni, A., Megharaj, M., Crosbie, N. D., Hirth, D., Aquilina, S., Rajendram, W., & Ball, A. S. (2021). Nitrogen contamination and bioremediation in groundwater and the environment: A review. In Earth-Science Reviews (Vol. 222). https://doi.org/10.1016/j.earscirev.2021.103816
  15. Padappayil RP, Borger J. Ammonia Toxicity. [Updated 2023 Mar 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK546677/
  16. Reitzer, L. (2014). Amino Acid Synthesis: Reference Module in Biomedical Sciences
  17. Rout, P. R., Bhunia, P., & Dash, R. R. (2017). Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. Bioresource Technology, 244, 484–495. https://doi.org/10.1016/J.BIORTECH.2017.07.186
  18. Sakarika, M., Spanoghe, J., Sui, Y., Wambacq, E., Grunert, O., Haesaert, G., & Vlaeminck, S. E. (2020). Purple non‐sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment. Microbial biotechnology, 13(5), 1336-1365
  19. Seruga, P.; Krzywonos, M.; Pyżanowska, J.; Urbanowska, A.; Pawlak-Kruczek, H.; Niedźwiecki, Ł. Removal of Ammonia from the Municipal Waste Treatment Effluents using Natural Minerals. Molecules 2019, 24, 3633. https://doi.org/10.3390/molecules24203633
  20. Shah, N.S M., Siti Halimah Hasmoni and Shafinaz Shahir. 2020. Isolation And Identification Of Purple Non-sulfur Bacteria From Upstream of Sungai Kim Kim, Pasir Gudang, Johor, Malaysia. Biosciences Symposium Of The Final Year Undergraduate Project. Proceeding
  21. Wang, J., Yan, D., Dixon, R., & Wang, Y. P. (2016). Deciphering the principles of bacterial nitrogen dietary preferences: a strategy for nutrient containment. MBio, 7(4), e00792-16
  22. Yang, A., Zhang, G., Meng, F., Zhi, R., Zhang, P., & Zhu, Y. (2019). Nitrogen metabolism in photosynthetic bacteria wastewater treatment: a novel nitrogen transformation pathway. Bioresource technology, 294, 122162
  23. Zhang, L., & Okabe, S. (2020). Ecological niche differentiation among anammox bacteria. In Water Research (Vol. 171). https://doi.org/10.1016/j.watres.2020.115468
  24. Zhang, X., Yan, J., Luo, X., Zhu, Y., Xia, L., & Luo, L. (2020). Simultaneous ammonia and Cr (VI) removal by Pseudomonas aeruginosa LX in wastewater. Biochemical Engineering Journal, 157, 107551. https://doi.org/10.1016/J.BEJ.2020.107551
  25. Zheng, L., Lin, H., Dong, Y., Li, B., & Lu, Y. (2023). A promising approach for simultaneous removal of ammonia and multiple heavy metals from landfill leachate by carbonate precipitating bacterium. Journal of Hazardous Materials, 456, 131662. https://doi.org/10.1016/J.JHAZMAT.2023.131662

Last update:

No citation recorded.

Last update:

No citation recorded.