skip to main content

Drying kinetics and thermal energy evaluation of Moringa oleifera leaves drying using dehumidification with zeolite

1Faculty of Agriculture Technology, Semarang University, Semarang, Indonesia

2Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia

Received: 26 Sep 2023; Revised: 11 Oct 2023; Accepted: 15 Nov 2023; Available online: 14 Dec 2023; Published: 1 Apr 2024.
Editor(s): Marcelinus Christwardana
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Citation Format:
Abstract
Moringa Oleifera leaves contain many phytochemical compounds, as the potential source of antioxidants. The leaves must be converted into dried form to extend the shelf life and prevent the nutritional qualities. The lack of a common sun-drying process for Moringa Oleifera leaves is dependent on the weather. But using convective dryers also requires high investment costs and results in very low energy efficiency. One potential option to enhance energy efficiency is lowering the humidity by dehumidification with zeolite. This research aims to evaluate the effect of drying temperature and the weight of adsorbent (zeolite) on drying kinetic and thermal efficiency of Moringa Oleifera leaves drying. Moringa Oleifera leaves were dried under different drying temperatures (30-70℃) and weight of zeolite (0-0.3 kg). The moisture content of Moringa Oleifera leaves and the input-output temperature was recorded to evaluate the moisture reduction and thermal efficiency. Results showed that the Page model can be used to predict the drying time. At the higher drying temperature and higher zeolite weight, moisture reduction and thermal efficiency increased. But the effect of zeolite is only significant in drying at temperatures below 50℃.
Fulltext View|Download
Keywords: Moringa Oleifera leaves, dehumidification, drying, zeolite
Funding: Semarang University

Article Metrics:

  1. Ademiluyi, A. O., Aladeselu, O. H., Oboh, G., & Boligon, A. A. (2018). Drying alters the phenolic constituents, antioxidant properties, α-amylase, and α-glucosidase inhibitory properties of Moringa (Moringa oleifera) leaf. Food Science and Nutrition, 6(8), 2123–2133. https://doi.org/10.1002/fsn3.770
  2. Asiah, N., Djaeni, M., & Hii, C. L. (2017). Moisture Transport Mechanism and Drying Kinetic of Fresh Harvested Red Onion Bulbs under Dehumidified Air. International Journal of Food Engineering, 13(9). https://doi.org/10.1515/ijfe-2016-0401
  3. Aznury, M., Zikri, A., Saputra, M. F., & Rachmadona, N. (2021). Analyzing Effect of Temperature on Drying Moringa (Moringa Oleifera) Leaves Using Photovoltaic Tray Dryer (Vol. 48, Issue 10)
  4. Djaeni, M., Anggoro, D., Santoso, G. W., Agustina, D., Asiah, N., & Hii, C. L. (2014). Enhancing the food product drying with air dehumidified by zeolite. Advance Journal of Food Science and Technology, 6(7), 833–838
  5. Djaeni, M., Ayuningtyas, D., Asiah, N., Hargono, Ratnawati, Jumali, & Wiratno. (2013). Paddy drying in mixed adsorption dryer with zeolite : drying rate and time. Reaktor, 14(3), 173–178. https://doi.org/10.14710/reaktor.14.3.173-178
  6. Djaeni, M., Bartels, P., Sanders, J., Straten, G. Van, Boxtel, A. J. B. Van, Djaeni, M., Bartels, P., Sanders, J., Straten, G. Van, & Boxtel, A. J. B. Van. (2007). Drying Technology : An International Journal Process Integration for Food Drying with Air Dehumidified by Zeolites Process Integration for Food Drying with Air Dehumidified by Zeolites. November 2014, 37–41. https://doi.org/10.1080/07373930601161096
  7. Djaeni, M., Kumoro, A. C., Sasongko, S. B., & Dwi, F. (2018). Drying Rate and Product Quality Evaluation of Roselle ( Hibiscus sabdariffa L .) Calyces Extract Dried with Foaming Agent under Different Temperatures. International Journal of Food Science, 2018, 1–17
  8. Djaeni, M., Kumoro, A. C., Sasongko, S. B., & Utari, F. D. (2018). Drying rate and product quality evaluation of roselle (Hibiscus sabdariffa L.) calyces extract dried with foaming agent under different temperatures. International Journal of Food Science, 2018. https://doi.org/10.1155/2018/9243549
  9. Ertekin, C., & Firat, M. Z. (2017). A comprehensive review of thin-layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57(4), 701–717. https://doi.org/10.1080/10408398.2014.910493
  10. Fuglie, L. J., Church World Service, N. Y. (USA) eng, & Alternative Action for African Development, D. (Senegal) eng. (1999). The miracle tree: Moringa oleifera, natural nutrition for the tropics. Dakar (Senegal) CWS
  11. Hasizah, A., Djalal, M., Mochtar, A. A., & Salengke, S. (2022). Fluidized bed drying characteristics of moringa leaves and the effects of drying on macronutrients. Food Science and Technology (Brazil), 42, 1–11. https://doi.org/10.1590/fst.103721
  12. Hernandez-Jaimes, C., Fouconnier, B., Perez-Alonso, C., Munguia-Guillen, J. L., & Vernon-Carter, E. J. (2013). Antioxidant Activity Degradation, Formulation Optimization, Characterization, and Stability of Equisetum Arvense Extract Nanoemulsion. Journal of Dispersion Science and Technology, 34(1), 64–71. https://doi.org/10.1080/01932691.2011.648460
  13. Kamalakar, D., Rao, L. N., Kumar, P. R., & Rao, M. V. (2014). Drying Characteristics of Red Chillies: Mathematical Modelling and Drying Experiments. International Journal of Engineering Sciences & Research Technology, 3(7), 425–437
  14. Kemp, I. C. (2014). Fundamentals of Energy Analysis of Dryers. In Modern Drying Technology (Vols. 4–4, pp. 1–45). https://doi.org/10.1002/9783527631728.ch21
  15. Mbikay, M. (2012). Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A review. Frontiers in Pharmacology, 3 MAR(March), 1–12. https://doi.org/10.3389/fphar.2012.00024
  16. Mujumdar, A. S. (2006). Principles, Classification, and Selection of Dryers Arun. Handbook Industrial Drying (3rd ed.). Taylor & Francis Group, LLC
  17. Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., & Abdan, K. (2016). Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599–618. https://doi.org/10.1111/1541-4337.12196
  18. Pakowski, Z., & Mujumdar, A. S. (2006). Basic Process Calculations and Simulations in Drying. Handbook of Industrial Drying (3rd ed.). Taylor & Francis Group, LLC
  19. Sasongko, S. B., Hadiyanto, H., Djaeni, M., Perdanianti, A. M., & Utari, F. D. (2020). Effects of drying temperature and relative humidity on the quality of dried onion slice. Heliyon, 6(7), e04338. https://doi.org/10.1016/j.heliyon.2020.e04338
  20. Setiaboma, W., Kristanti, D., & Herminiati, A. (2019). The effect of drying methods on chemical and physical properties of leaves and stems Moringa oleifera Lam. AIP Conference Proceedings, 2175(November). https://doi.org/10.1063/1.5134594
  21. Sukmawaty, Murad, Ansar, Kurniawan, H., & Fitri, Z. (2021). Analysis of heat energy in the drying process of Moringa Oleifera leaves using a greenhouse effect dryer (ERK). In IOP Conference Series: Earth and Environmental Science (Vol. 913, Issue 1). IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/913/1/012036
  22. Utari, F. D., Djaeni, M., Purbasari, A., & Siqhny, Z. D. (2022). Drying characteristics and kinetics of rice flour biodegradable film under different drying temperatures. Materials Today: Proceedings, 63, S178–S182. https://doi.org/https://doi.org/10.1016/j.matpr.2022.02.207
  23. Vats, S., & Gupta, T. (2017). Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan, India. Physiology and Molecular Biology of Plants, 23(1), 239–248. https://doi.org/10.1007/s12298-016-0407-6
  24. Vera Zambrano, M., Dutta, B., Mercer, D. G., MacLean, H. L., & Touchie, M. F. (2019). Assessment of moisture content measurement methods of dried food products in small-scale operations in developing countries: A review. Trends in Food Science and Technology, 88(July 2018), 484–496. https://doi.org/10.1016/j.tifs.2019.04.006
  25. Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y., & Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. In Industrial crops and products: Vol. v. 44. Elsevier B.V

Last update:

No citation recorded.

Last update:

No citation recorded.